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PROTONATION CF (2-FORMYLNORBORNADIENE)CYCLOPENTADIENYLKIODIUM.
PIRST EXALPLE OF DIRECT TRANSITION METAL PARTICIPATION IN STA-
BILIZING OF & -CARBOCATIONIC CENTRE IN CO-PROTONATED ACYL-SUBSTI-
TUTED O ~CONPLEXES
I.T.Chizhevsky , N.V.Rastova, N.E.Kolobova,
P.V.Petrovskii, L.E.Vinogradova and L.A.Leites
A.N.Nesmeyanov Institute of Organoeiement Compounds, Academy of Sciences
of the USSR, 28 Vavilov Str., Moscow, USSR
Summary: Cationic hydroxyallylolefin G -complexes 10a,b whose stabiligzation
of the 4 -carbocationic centre is achieved with simultaneous perticipation of
both rhodium end oxygen atoms were prepared from the reaction of HC1l or
F POCH with aldehyde 8 in ether.

It is known that the heterocatom adjacent to & -C* centre in organometal-
lic & -carbocations can stabilize this centre competing in this respect with
the metal atom in the rest of the molecular fragmentl » The metal participa-~
tion may occur as follows: by electron release from the metal to carbocatio-
nic centre via the coordinated ligand (conjugative stabilization), or by dai-
rect metal—C;_interection (neighboring metel participation). Which of the me=-
chanism will predominate depends on the resonance-stabilizing effect of the
heterocatom-containing substituents at CI. In the 9 -olefin iron carbonyl com-
plexes two extreme structures 1 and 2 are fixedlb), each corresponding to one
of the above mentioned & -Ct stabilization mechanisms. In the most of the
other cationic §i -complexes (for example compounds ;—i) the stabilization of
the cationic centre occurs as a rule without the direct participation of & me-
tal by a d&.,5i~conjugation mechanism.
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The same & -CT stabilization mechenism is also considered for hydroxy-
carbocations §5) and zla)’ which are formed by protonation of the correspon-
ding acyl-derivatives with strong protonic acids. However, this mechanism is
not the only possible one in organometallic cations of the related type; the
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stabilization of the &-C+ within one complex can be achieved by the direct
participation of both the heteroatom and the transition metal atom simulta-

neously.
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Earlier, we prepared stable O-alkylated products 9a-¢ from the reaction
of (2-formy1norbornadiene)cyclopentadienylrhodium 8 with aliphatic alcohols
in the presence of strong acids /. The X-ray analysis of one of these ( Sa,
R:he,Ag:PF6 ) has revealed not only the presence of direct Rh-C(8) bond
{2.39 A )but also has shown an appreciable involvement of the oxygen atom of

+

fon

the methoxy group in stablllzlng the neighboring cationic centre (€ §)=0
bond length is equal to 1.36 A c(3)c()c(8)o = 170 °). “hese data were in-
terpreted from the position of the realizing allylolefin (A) but not from
the position of the dlene (B) type of the metal-ligaend bond in the following

complexes 6 . 5 <, +
4
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¢ R=Et, An:BF4
<19§LP) a R=H, An=Cl; b R=H, An=F2POO

In this work we succeded in isolating O-protonated cationic complexes
1l0a,b as crystalline salts7) from the direct protonation of aldehyde 8 with
LC1 or F,POOH in ether. The IR, 14 ana 13¢c MR spectra of 10a,b confirm that
the protonation site is the carbonyl oxygen atom. These data are also in ac-
cordance with only the (A )type structure for these complexes while it is
known that the resonance-stabilizing effect of the OH-group is enormously
large and significantly higher than that of the AlkO-groups (see discussion
1nla)).

The IR spectra of complexes 10e,b in nujol mull differ markedly from
those of initial aldehyde £ in that they do not shomfbczo band which was
present in the spectrum of 8 at 1658 cm_l. New intensive bands appear inste-
ad at 1557 (10a) and 1575 (10b) cm™t along with a broad absorption in the
region of 2100-2800 cm’l. The latter bands are assigned to the stretching
vibration of H-bonded OH—group58 . The presence of analogous intensive IR
bands in the region of 1550-1600 cm-l for O-protonated acylferrocenes was
related with the decrease in the carbon-oxygen bond order9). However, we ob-

serve in the IR spectrum of the cation 10a enriched with 75% 18O-isotope no
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isotopic shift of band at 1557 em~l while the corresponding shift of‘bC 0
for the 18O 8 (see for preparation) was 30 cn 1. With this in mind we as-
sign the observed IR bands of the complexes 10a,b at 1557 and 1575 cm -1 reg-
pectively to a mixed stretching vibration of the oxoallylic fragment
03’02'08'0 The absence in the IR spectrum of 1lCa of bands corresponding to

10)

[HCl ~ complex anion rules out an alternative dimeric structure of 10a

with a bridged hydrogen atom.

lH NLR spectra of complexes 10a,b as compered with those of aldehyde
éll) exhibit signals which are noticeably shifted downfield (with the exce-

ption of the H(8) signal). This is typical when a positive charge appears

in the norbornadieneﬁT—complexes12 . The signal of H(8) is shifted upfield
on passing from 8 to 10a,b which is consistent with a decrease in the aniso-
tropic effect of the protonated carbonyl grouplB) The lh NMR spectra of
10a,b also revealed single broadened signals at 11-12 ppm which are assigned
to the OH-group protons of these complexesl4). The structure of F POO-anion
in complex 10b is confirmed by the 19F and 31P NIR spectralS)

Analysis of 130 NiR spectra of complexes 8-10a,b (see Table ) show that
the chemicel shift and the coupling constants JlOB(Rh)-lB(C) of the carbon
signals in the spectra of 10a,b are practically identical to those of cali-
on 9a whose structure was discussed above. Also typically, the carbon signal
€C(8) in the 13C NMR spectra is strongly shielded (A§~30-50 ppm) on passing
from aldehyde 8 to cations 9g& or 10a,b. The upfield shift of the &-carbon
signal 1s seen in the 130 NIR spectra on passing from & -olefin complexes

(CO)4Fe(7 -RCH:CHMe=NR Y11 t01$ clic allylic analog 216)

and at the same
time this signal is deshielded in the spectra of cations 1 where there is
no direct Fe-C% interection.

Table. 130 NIR spectra of complexes 8-10a,b in CH201

Compounds Chemical shift, O (ppm)/JIOB(Rh)—13(C) in Hz

Cl{@) C2 €3 C4(1) C5(6) C6(5) C7 8 R CHg

8 42.0 47.9 30.7 47.2 32.7 34.3 55.0 188.2 =~ 85,2
2.2 9.8 11.0 2.2 10.6 10.6 5.2 3.0 4.4

9a 39.5 63.1 32.3 47.0 43.8 47.6 54.4 132.0. 14.9 89.4
s. 4.5 10.5 s. 7.4 T.4 2.2 3.0 s. 4.5

10a 39.3 §2.7 32.0 46.6 39.6 43.5 53.4 142.0 - 89.1
s. 5.6 11.0  s. 8.1 9.3 2.9 s.br. 4.4

10b 39.8 60.1 31.6 46.8 39.4 43.0 53.6 149.0 - £8.8
s. 5.7 10.7 S. 8.0 8.3 2.6 s.br, 4.6

Thus, IR, 1H and 13C NMR spectra confirm the realization of the allyl-
olefin type of the metal-ligand bond in the cations 10e,b which can be re-
garded as organometsllic hydroxycarbcations additionally stabilized by di-

rect interection of the metal-CY .
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