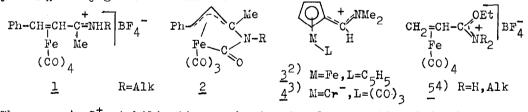
PROTONATION OF (2-FORMYLNORBORNADIENE)CYCLOPENTADIENYLRHODIUM. FIRST EXAMPLE OF DIRECT TRANSITION METAL PARTICIPATION IN STA-BILIZING OF & -CARBOCATIONIC CENTRE IN O-PROTONATED ACYL-SUBSTI-TUTED \Im -COMPLEXES


I.T.Chizhevsky*, N.V.Rastova, N.E.Kolobova,

P.V.Petrovskii, L.E.Vinogradova and L.A.Leites

A.N.Nesmeyanov Institute of Organoelement Compounds, Academy of Sciences of the USSR, 28 Vavilov Str., Moscow, USSR

<u>Summary</u>: Cationic hydroxyallylolefin \mathfrak{M} -complexes <u>10a,b</u> whose stabilization of the \mathcal{A} -carbocationic centre is achieved with simultaneous participation of both rhodium and oxygen atoms were prepared from the reaction of HCl or F_2 POCH with aldehyde <u>8</u> in ether.

It is known that the heteroatom adjacent to $\blacktriangle -C^+$ centre in organometallic \measuredangle -carbocations can stabilize this centre competing in this respect with the metal atom in the rest of the molecular fragment¹⁾. The metal participation may occur as follows: by electron release from the metal to carbocationic centre via the coordinated ligand (conjugative stabilization), or by direct metal- C_{\bigstar}^+ interection (neighboring metal participation). Which of the mechanism will predominate depends on the resonance-stabilizing effect of the heteroatom-containing substituents at C_{\bigstar}^+ . In the \mathfrak{N} -olefin iron carbonyl complexes two extreme structures 1 and 2 are fixed^{1b)}, each corresponding to one of the above mentioned \bigstar -C⁺ stabilization mechanisms. In the most of the other cationic \mathfrak{N} -complexes (for example compounds 3-5) the stabilization of the cationic centre occurs as a rule without the direct participation of a metal by a $d_{\mathfrak{N}}$ -conjugation mechanism.

The same &black-C⁺ stabilization mechanism is also considered for hydroxycarbocations $\underline{6}^{5}$ and $\underline{7}^{la}$, which are formed by protonation of the corresponding acyl-derivatives with strong protonic acids. However, this mechanism is not the only possible one in organometallic cations of the related type; the

3605

stabilization of the λ -C⁺ within one complex can be achieved by the direct participation of both the heteroatom and the transition metal atom simultaneously.

Earlier, we prepared stable 0-alkylated products <u>9a-c</u> from the reaction of (2-formylnorbornadiene)cyclopentadienylrhodium <u>8</u> with aliphatic alcohols in the presence of strong acids⁶. The X-ray analysis of one of these (<u>9a</u>, R=Ne,An=PF₆) has revealed not only the presence of direct Rh-C(8) bond (2.39 Å) but also has shown an appreciable involvement of the oxygen atom of the methoxy group in stabilizing the neighboring cationic centre (C(8)=0 bond length is equal to 1.36 Å; C(3) C(2)C(8)O = 170[°]). These data were interpreted from the position of the realizing allylolefin (A) but not from the position of the diene (B) type of the metal-ligand bond in the following complexes ⁶.

 $(\underline{9a-c})$ a,b R=Le,Et, An=PF₆ c R=Et, An=BF₄ (10a,b) a R=H, An=C1; b R=H, An=F₂POO

In this work we succeded in isolating O-protonated cationic complexes <u>lOa,b</u> as crystalline salts⁷ from the direct protonation of aldehyde <u>8</u> with HCl or F_2 POOH in ether. The IR, ¹H and ¹³C NER spectra of <u>lOa,b</u> confirm that the protonation site is the carbonyl oxygen atom. These data are also in accordance with only the (A)-type structure for these complexes while it is known that the resonance-stabilizing effect of the OH-group is enormously large and significantly higher than that of the AlkO-groups (see discussion in^{1a}).

The IR spectra of complexes <u>lOe,b</u> in nujol mull differ markedly from those of initial aldehyde <u>8</u> in that they do not show $V_{C=0}$ band which was present in the spectrum of <u>8</u> at 1658 cm⁻¹. New intensive bands appear instead at 1557 (<u>lOa</u>) and 1575 (<u>lOb</u>) cm⁻¹ along with a broad absorption in the region of 2100-2800 cm⁻¹. The latter bands are assigned to the stretching vibration of H-bonded OH-groups⁸. The presence of analogous intensive IR bands in the region of 1550-1600 cm⁻¹ for O-protonated acylferrocenes was related with the decrease in the carbon-oxygen bond order⁹. However, we observe in the IR spectrum of the cation <u>lOa</u> enriched with 75% ¹⁸O-isotope no isotopic shift of band at 1557 cm⁻¹ while the corresponding shift of $\oint_{C=0}^{18}$ for preparation) was 30 cm⁻¹. With this in mind we assign the observed IR bands of the complexes <u>lOa,b</u> at 1557 and 1575 cm⁻¹ respectively to a mixed stretching vibration of the oxoallylic fragment $C_{3}=C_{2}=C_{8}=0$. The absence in the IR spectrum of <u>lOa</u> of bands corresponding to [HCl₂] - complex anion¹⁰ rules out an alternative dimeric structure of <u>lOa</u> with a bridged hydrogen atom.

¹_{H NNR} spectra of complexes <u>10a,b</u> as compared with those of aldehyde <u>8</u>¹¹) exhibit signals which are noticeably shifted downfield (with the exception of the H(8) signal). This is typical when a positive charge appears in the norbornadiene π -complexes¹²). The signal of H(8) is shifted upfield on passing from <u>8</u> to <u>10a,b</u> which is consistent with a decrease in the anisotropic effect of the protonated carbonyl group¹³). The ¹H NMR spectra of <u>10a,b</u> also revealed single broadened signals at 11-12 ppm which are assigned to the OH-group protons of these complexes¹⁴). The structure of F₂POO-anion in complex <u>10b</u> is confirmed by the ¹⁹F and ³¹P NMR spectra¹⁵).

Analysis of ¹³C NMR spectra of complexes <u>8-10a,b</u> (see Table) show that the chemical shift and the coupling constants $J_{103}(Rh)_{-13}(C)$ of the carbon signals in the spectra of <u>10a,b</u> are practically identical to those of cation <u>9a</u> whose structure was discussed above. Also typically, the carbon signal C(8) in the ¹³C NMR spectra is strongly shielded ($\Delta\delta$ -30-50 ppm) on passing from aldehyde <u>8</u> to cations <u>9s</u> or <u>10a,b</u>. The upfield shift of the &-carbon signal is seen in the ¹³C NMR spectra on passing from \Im -olefin complexes (C0)₄Fe(γ^2 -RCH=CHMe=NR¹) <u>11</u> to cyclic allylic analog <u>2</u>¹⁶) and at the same time this signal is deshielded¹⁷) in the spectra of cations <u>1</u> where there is no direct Fe-C⁴ interection.

Table. ¹³C NMR spectra of complexes <u>8-10a,b</u> in CH₂Cl₂

Compounds	Compounds Chemical shift, δ (ppm)/J _{103(Rh})-13(C) in Hz									
	Cl (4)	C2	C3	C4(1)	05(6)	C6(5)	C7	C8	R	с ₅ н ₅
<u>8</u>	42.0	47.9	30.7	47.2	<u>32.7</u>	34.3	<u>55.0</u>	188.2		85.2
	2.2	9.8	11.0	2.2	10.6	10.6	5.2	3.0		4.4
<u>9a</u>	<u>39.5</u>	<u>63.1</u>	32.3	47.0	43.8	47.6	<u>54.4</u>	<u>132.0.</u>	14.9	89.4
	s.	4.5	10.5	s.	7.4	7.4	2.2	3.0	s.	4.5
<u>10a</u>	<u>39.3</u>	62.7	32.0	46.6	<u>39.6</u>	<u>43.5</u>	<u>53.4</u>	142.0	-	<u>89.1</u>
	s.	5.6	11.0	s.	8.1	9.3	2.9	s.br.		4.4
<u>10b</u>	<u>39.8</u>	<u>60.1</u>	<u>31.6</u>	46.8	39.4	43.0	<u>53.6</u>	149.0	-	88.8
	s.	5.7	10.7	s.	8.0	8.3	2.6	s.br.		4.6

Thus, IR, ¹H and ¹³C NMR spectra confirm the realization of the allylolefin type of the metal-ligand bond in the cations <u>10a,b</u> which can be regarded as organometallic hydroxycarboations additionally stabilized by direct interection of the metal- C_{A}^{+} . References and Notes

- 1. (a) C.P.Lillya and R.A.Sanatjian, <u>J. Organometal. Chem.</u>, <u>32</u>, 371 (1971);
 (b) M.I.Rybinskaya, L.V.Rybin, A.A.Pogrebnyak and N.A.Stelzer, <u>Koord</u>.
- <u>Chem.</u>, <u>6</u>, 1475 (1980); *L.*I.Rybinskaya, <u>Pure Appl. Chem., 54</u>, 145 (1982) 2. W.E.Watts, <u>J. Organometal. Chem.</u>, <u>220</u>, 165 (1981)
- 3. B.Lubke and U.Behrens, J. Organometal. Chem., 149, 327 (1978)
- 4. A.N.Nesmeyanov, L.V.Rybin, A.A.Pogrebnyak and M.I.Rybinskaya, <u>J. Organome-tal. Chem.</u>, <u>116</u>, 327 (1976)
- 5. G.Neshvad, R.L.Roberts and J.Silver, <u>J. Organometal. Chem.</u>, <u>236</u>,349 (1982)
- 6. I.T.Chizhevsky, N.E.Kolobova, N.V.Rastova, V.F.Sizoi, P.V.Petrovskii, V.G. Andrianov and Yu.T.Struchkov, <u>J. Organometal. Chem.</u>, <u>262</u>, 81 (1984)
- 7. <u>10a</u>: (Anal. Calcd.: C, 48.16; H, 4.39; Rh, 31.29%. Found: C, 48.00; H, 4.31; Rh, 31.69), m.p. 103⁰ (without dec.): <u>10b</u>: (Anal. Calcd.: C, 40.00; H, 3.59; P, 7.95%. Found: C, 39.78; H, 3.44; P, 8.23%)
- 8. The IR spectra of <u>lOa,b</u> in the region of $\oint_{C=0}$ and \oint_{OH} are close to those of <u>6</u>, where the intramolecular H-bond of OH…Fe-type is considered to be present⁹). In our opinion, in complexes <u>lOa,b</u> the interionic H-bond of the OH…An-type is realized.
- 9. (a) H.E.Rubulcava and J.B.Thomson, <u>Spectrochim. Acta.</u> 18, 449 (1962); (b)
 A.N.Nesmeyanov, E.G.Perevalova, L.I.Leont'eva and O.V.Grigor'eva, <u>Izv</u>.
 <u>Akad. Nauk SSSR, Ser. Khim.</u>, 5, 1171 (1979)
- 10.J.C.Evans and G.Y.-S.Lo, <u>J. Phys. Chem.</u>, <u>70</u>, 11 (1966)
- 11.(CD_2Cl_2 , TMS); <u>B</u>: δ 8.68(s,1,H₈), 5.23(d,5,J^{*}=0.8,C_5H_5), 3.80(m,1,H_1), 3.68 (m,1,H₆), 3.53(m,1,H₅), 3.46(m,2,H_{3,4}), 1.17(d,1,J_{AB}=10.0,H_{7A}), 1.02(d,1, J_{AB}=10.0,H_{7B}); <u>10a</u>: δ 11.0(s.br.,1,0H), 7.88(s,1,H₈), 5.64(d,5,J^{*}=0.9,C_5H_5), 4.12(m,2,H_5,6), 3.82(m,1,H_1), 3.67(m,1,H₃), 3.61(m,1,H₄), 1.53(d,1,J_{AB}=10, H_{7A}), 1.36(d.t.,1,J_{AB}=10,J_t=1.8,H_{7B}); <u>10b</u>: δ 12.2(s.br.,1,0H), 7.85(s,1, H₈), 5.56(d,5,J^{*}=0.8,C_5H_5), 4.14(m,2,H_5,6), 3.83(m,1,H_1), 3.63(m,2,H_{3,4}), 1.55(d,1,J_{AB}=10,H_{7A}), 1.36(d.t.,1,J_{AB}=10,J_t=1.6,H_{7B}). J^{*}=J_{103,Rh-1}H (Hz). 12.I.T.Chizhevsky, A.A.Koridze, V.I.Bakhmutov and N.E.Kolobova,
- J. Organometal. Chem., 206, 361 (1981)
- 13.M.Brookhart, G.C.Levy and S.Winstein, J. Am. Chem. Soc., 89, 1735 (1967)
- 14. The signals observed in ¹H NMR spectra of <u>10a,b</u> at 11.0 and 12.2 ppm disappear upon D₂O addition.
- 15. (CD₂Cl₂, CF₃COOH); δ (19) F^{=+5.57} (d, J_{P-F}=960Hz); (CD₂Cl₂, H₃PO₄): δ (31) P⁼ =-16.9(t, J_{P-F}=956Hz).
- 16.A.N.Nesmeyanov, L.V.Rybin, N.A.Stelzer and M.I.Rybinskaya, <u>J. Organometal.</u> Chem., <u>182</u>, 393 (1979)
- 17.The C_d -signal in the ¹³C NMR spectra of <u>11</u> (R=H, R¹=i-Fr) is observed at 146 ppm whereas in spectra of 1 (R=H,Alk) at 186-188 ppm. The authors are grateful to Prof. M.I.Rybinskaya, Dr. L.V.Rybin and N.A.Stelzer for supplying us with these data.

(Received in UK 3 April 1985)